Pattern recall in networks of chaotic neurons
نویسندگان
چکیده
This research investigates the potential utility of chaotic dynamics in neural information processing. A novel chaotic spiking neural network model is presented which is composed of non-linear dynamic state (NDS) neurons. The activity of each NDS neuron is driven by a set of non-linear equations coupled with a threshold based spike output mechanism. If time-delayed self-connections are enabled then the network stabilises to a periodic pattern of activation. Previous publications of this work have demonstrated that the chaotic dynamics which drive the network activity ensure that an extremely large number of such periodic patterns can be generated by this network. This paper presents a major extension to this model which enables the network to recall a pattern of activity from a selection of previously stabilised patterns.
منابع مشابه
بهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه
In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...
متن کاملImproved Chaotic Associative Memory for Successive Learning
Recently, neural networks are drawing much attention as a method to realize flexible information processing. Neural networks consider neuron groups of the brain in the creature, and imitate these neurons technologically. Neural networks have some features, especially one of the important features is that the networks can learn to acquire the ability of information processing. In the filed of ne...
متن کاملChaotic pattern transitions in pulse neural networks
In models of associative memory composed of pulse neurons, chaotic pattern transitions where the pattern retrieved by the network changes chaotically were found. The network is composed of multiple modules of pulse neurons, and when the inter-module connection strength decreased, the stability of pattern retrieval changed from stable to chaotic. It was found that the mixed pattern of stored pat...
متن کاملThreshold control of chaotic neural network
The chaotic neural network constructed with chaotic neurons exhibits rich dynamic behaviour with a nonperiodic associative memory. In the chaotic neural network, however, it is difficult to distinguish the stored patterns in the output patterns because of the chaotic state of the network. In order to apply the nonperiodic associative memory into information search, pattern recognition etc. it i...
متن کاملThe Assessment of Applying Chaos Theory for Daily Traffic Estimation
Road traffic volumes in intercity roads are generally estimated by probability functions, statistical techniques or meta-heuristic approaches such as artificial neural networks. As the road traffic volumes depend on input variables and mainly road geometrical design, weather conditions, day or night time, weekend or national holidays and so on, these are also estimated by pattern recognition te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bio Systems
دوره 87 2-3 شماره
صفحات -
تاریخ انتشار 2007